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Abstract. I3A has submitted several systems to NIST SRE2010 for the
core-core, core-10sec, 10sec-10sec and core-summed conditions. The sys-
tems are different variants of the GMM-UBM with Joint Factor Analysis
approach: JFA-LLR, JFA-SVM, iVectors and the fusion of them. All the
systems share the same feature extraction and UBM. The speaker seg-
mentation for the summed condition is performed using a speaker factors
based system. We show the results we have got in the evaluation together
with some post evaluation experiments focusing on the influence of the
development data on the calibration.
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1 Introduction

Every two years NIST conducts a evaluation of speaker recognition systems [1] in
order to compare the different state of the art approaches on a commom corpus.
Like in previos years, the 2010 task is text independent speaker detection, that
is, decide if a given speaker is speaking in a given test segment.

This year, like in 2008, we have data from phonecalls recorded by a tele-
phone channel or by a room microphone channel and from an interview scenario
recorded by a room microphone channel. What is new this year is that some of
the speech has been collected in a way intended to produce high or low vocal
effort speech by the target speaker. Besides, this year the interview segments can
have different durations. Finally, there is a new operating point for the core-core
conditions that intends to reduce the number of false alarms as much as possible,
as we will see later. NIST has made available an optional extended trial list in
order to get a robust performance measure in this new operating point.

We have submitted systems based on the well known Joint Factor Analysis
Approach [2]. These share the same feature extraction and UBM. The systems
submitted for each of the conditions we participate are:

— core-core/coreext-coreext:
1. Fusion of JFA-SVM and JFA-LLR, both Gender Dependent (GD)
2. JFA-SVM GD
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3. JFA-LLR GD
— core-10sec/10sec-10sec:
1. Fusion of JFA-LLR and iVectors, both GD
2. JFA-LLR GD
— core-summed:
1. JFA-LLR Gender Independent (GI)

The speaker segmentation for the summed condition is performed using a speaker
factors based system.

This paper is organized as follows. Section 2 explains the feature extraction
process. Section 3 describes the speaker segmentation algorithm. Sections 4 to 6
describes the classification systems used and the development data used to train
the JFA matrices. Section 7 focuses on the calibration procedure. In section 8,
we present the results we have got in the evaluation. Finally, in section 9, we
draw some conclusions.

2 Feature Extraction

The front-end extracts feature vectors of 20 MFCC including CO (C0-C19) over
a 25 ms hamming window every 10 ms (15 ms overlap), and first and second
order derivatives are computed over the feature vector sequence.

Voice Activity Detection (VAD) is performed computing the Long-Term
Spectral Divergence (LTSD) of the signal every 10 ms, and comparing it against
a threshold as in [3]. For phone calls, where two channels are available, namely
channel of interest and reference channel, the reference channel is used for
crosstalk removal. For interview segments, NIST provided ASR labels are used
for removing the interviewer.

After frame selection, features are short time Gaussianized with a 3 seconds
window as in [4].

3 Speaker Segmentation

For the core-summed condition we used a segmentation system to generate two
speaker dependent feature vector streams for every test segment.

To perform speaker segmentation, first, we compute a stream of speaker fac-
tors of dimension 20 for the given recording. These factors are computed using
12 MFCC with no derivatives (C1-C12) and a GMM of 256 Gaussians. Then,
we model the stream with two Gaussians and, considering that every Gaussian
belongs to a single speaker, we segment the stream using Viterbi decoding. The
system is very similar to that proposed in [5], but we perform the algorithm on
the whole segment, rather than in one minute segments. After this first segmen-
tation, we apply two Viterbi re-segmentations using 12 MFCC as features, and
GMM as speaker models, using soft-clustering in our second re-segmentation [6].

Segmentation is done over speech frames only. Then, the feature vector
stream is separated into two different streams (one per speaker). After that,
every stream is Gaussianized separately.
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4 JFA-LLR System

This system is a simplified version of [2] with the following configuration.

4.1 Universal Background Models

Gender Dependent (GD) and Gender Independent (GI) Universal Background
Models (UBM) of 2048 Gaussians are trained by EM iterations. For this purpose,
we have used all the telephone signals in SRE2004, SRE2005 and SRE2006
databases (649 male speakers with 7412 signals and 801 female speakers with
9889 signals).

4.2 JFA Training

JFA Hyperparameters are trained from the previous background models. 300
eigenvoices (v) and 100 telephone eigenchannels (upn,) are trained using tele-
phone data from all the speakers of SRE2004, SRE2005 and SRE2006 databases
having, at least, 8 recordings by speaker (530 male speakers with 7398 signals
and 731 female speakers with 9938 signals). Another 100 eigenchannels (un;.)
are trained using all signals from speakers having far field microphone data in
SRE2005 and SRE2006 and 50 speakers (kept out speakers) with interview data
from SRE2008 (106 male speakers with 6244 signals and 119 female speakers with
6919 signals). Both eigenchannel matrices are stacked together for the core-core
condition. For the other conditions, only the telephone eigenchannel matrix is
used. Finally, the remaining speaker variability matrix (d) is trained from the
speakers of SRE2004, SRE2005 and SRE2006 having least than 8 recordings by
speaker (201 male speakers with 547 signals and 152 female speakers with 668
signals). MAP estimates of speaker and channel factors are fixed for estimating
d matrix to speed up the system. The d matrix is used in all the conditions but
the 10sec-10sec. All the matrices are trained by EM ML+MD iterations.

4.3 Speaker Enrollment and Scoring

Speakers are enrolled into the system using MAP estimates of their speaker and
remaining variability factors (y,z) so the speaker means super vector is given by:

My =mypm +vy +dz . (1)

Trial scoring is performed using first order Taylor approximation of the LLR
between the target and the UBM Models like in [7].

LLR ~ (vytrn + dztrn)tz_l(Ftst - Ntstuxtst) - (2)

ZTNorm score normalization is applied using telephone data from SRE2004,
SRE2005 and SRE2006 (628 male speakers and 858 female speakers with 4 seg-
ments by speaker). For the summed condition the maximum score of the two
automatic segmented speakers is chosen.
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5 JFA-SVM System

5.1 JFA Training

This system shares the same UBM and JFA matrices from the previous one.

5.2 SVM Scoring
Speaker enrollment and scoring is done by an SVM with the following kernel:
k(x1,29) = (vy; +dz1)  ZH(Fy — Nouzs) + (vye +dze) X H(F) — Nyuzy) . (3)

Background signals for SVM training are chosen from SRE2004, SRE2005,
SRE2006 and the kept out speakers from SRE2008. For telephone background
segments we have 653 male speakers and 883 female speakers with 4 signals by
speaker. For microphone background segments we use 119 males and 106 female
speakers with 2 signals by speaker and type of microphone. ZTNorm is applied
to the SVM score using the same SVM background segments. For SVM training
we use libsvm [8].

6 iVectors System

6.1 Total Variability Space Training

We follow the approach taken in [9]. Total variability space of dimension 400 is
trained using the same data as for JFA eigenvoices matrix by ML-+MD iterations.
Linear Discriminant Analysis (LDA) and Within Class Covariance Normaliza-
tion (WCCN) are applied to the total variability factors (iVectors) for inter-
session compensation reducing the iVector dimension to 200. For this purpose,
we use the same data as for the telephone eigenchannels matrix.

6.2 Scoring

Speakers are enrolled into the system using MAP estimates of their channel
compensated iVectors. Trials are evaluated by cosine distance between training
and testing iVectors. We apply ZTNorm using the same segments as in the JFA-
LLR system.

7 Calibration and Fusion

The systems have been calibrated to minimize the NIST performance measure
given by the normalized cost function:

C(Det = CIVIZ‘SSP]Wiss|TargetPTa'rget + CFAPFA\NonTarget(l - PTarget)

CNon = CDet/CDefault CDEfault = min {C]WissPTargety CFA(l - PTa.'rget)} .
(4)
In 2010 a new set of cost model parameters has been defined for the core-core
conditions. The old values, used in previous evaluations, are kept for the rest of
the conditions as shown in Table 1.
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Table 1. Cost Function Parameters

CM'L'SS CFA PTarget
core-core/coreext-coreext| 1 1 | 0.001
non core 10 1 0.01

7.1 Core-core

Calibration The system output scores are calibrated to mean log-likelihood
ratios by linear logistic regression using FoCal package [10]. For the new NIST
cost function false alarms count 1000 times more that misses. This means that,
in order to have our system well calibrated we need to get a very low number
of false alarms. However, according to the Doddington ’s ”rule of 30” [11], to
be 90% confident that the true error rate is 30% of the true error rate there
needs to be at least 30 errors. So, to achieve robust calibration, we need a good
estimation of the false alarm error rates and, therefore, a development trial list
such as our system produces a fair amount of false alarms for the new operating
point. For that purpose, we need a list with millions of non target trials. We
have built a trial list using data from SRE2008 including most of the common
conditions included in SRE2010 evaluation. This list includes all trials that can
be done using all training short, long and follow-up versus all testing short, long
and follow-up English SRE2008 segments. We keep out the 50 speakers used in
JFA training. In total, we have around 4M male trials and 10M female trials.

Besides, given that false false alarms (targets miss-labeled as non targets)
have great influence on the cost, the labeling of the trial list needs to be accu-
rate. On the contrary, we would overestimate the cost and miss-calculate the
calibration parameters.

We do multiple condition calibration iteratively until convergence:

1. Gender dependent (male, female)

2. Channel dependent (mic-mic same channel, mic-mic different channel, mic-
phn, phn-phn)

3. Length dependent (short-short, long-long, long-short, short-long)

Same-Different Microphone detection We have observed that the same
microphone trials present an upwards shifted score distribution compared to the
different microphone trials. That makes necessary to calibrate this two kind of
trials separately. As far as the microphone information is not provided by NIST,
we do automatic same/different microphone detection. For that, we use a iVec-
tors like system. We take the microphone speaker factors corresponding to the
Umie Matrix as features. We train LDA and WCCN using SRE2008 data from the
kept out speakers taking the 12 more discriminative directions. Cosine distance
is used for scoring. Scores are normalized using SNorm [12] with microphone
segments, again, from the 50 kept out speakers.

The channel detection score is calibrated using FoCal with a same channel
prior probability of 0.1. This way, for each mic-mic trials we get a soft probability
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of being same or different microphone trial. We use this probability together with
FoCal bilinear on the speaker detection calibration.

Fusion The calibrated systems are channel dependent fused using again FoCal
package.

7.2 Non core-core

For the non core-core conditions we do gender dependent calibration and fusion
using the det7 matching conditions of SRE2008 as development lists.

8 Results

8.1 Core-core

In Figure 1 we show the DET curves for the three systems submitted in the core-
core and coreext-coreext conditions. We can see all the systems perform quite
similarly having I3A_1 slightly better curves. The system is very robust across
the common conditions [1], producing similar curves in most of them whether
they include telephone or interview speech. We only notice a clear degradation in
the high vocal effort conditions (det6, det7). On the other side, low vocal effort
speech (det8, det9) seems not to affect performance getting even better results
than the normal vocal effort conditions.

In Table 2 we show the actual and minimum costs for the core-core conditions
using the new cost model parameters. There were some labeling errors in the
former SRE2008 key provided by NIST. After submitting the SRE2010 results
NIST made available some labeling corrections. We compare the results that
we get calibrating the systems using the original key and the corrected one on
the development. For most of the conditions, but det2, we get better actual
costs using the corrected key. This is especially striking for the interview same
microphone (detl) and the phonecall microphone (det4, det7, det9) conditions
whose improvement allows getting actual costs lower than 1.0.

Comparing the three systems submitted, it is not clear which of them produce
better minimum costs. However, I3A _3 seems to have better actual costs. In fact,
it is the only one that produces a cost lower than 1.0 on the detl condition.
Therefore, we think it is easier to get a robust calibration across datasets using
I3A_3.

We want to explore, too, the impact of the development trial list size on the
calibration. For that, we have carried out another calibration using a develop-
ment list of around 100K male trials and 160K female trials only. The results for
I3A _3 system are shown in Table 3. The short list performs better than expected
getting reasonably good calibrations in the microphone conditions. However, ac-
tual costs in the telephone conditions (det5, det6, det8) are clearly better using
the long list.
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Table 2. actCost/minCost for core-core conditions

actCost/minCost| detl det2 ‘ det3 det4 detb det6 det7 det8 det9

I3A 1 2.21/0.70[0.49/0.48] 0.61/0.41 | 1.21/0.62 | 0.55/0.40 | 0.84/0.77 |0.99/0.690.19/0.17]1.06/0.40
I13A 2 3.12/0.72 0.51/0.50 {0.97/0.35|1.79/0.61|0.81/0.38 | 0.85/0.80 |1.52/0.70 {0.19/0.18{1.24/0.39
I3A°3 1.18,/0.75 | 0.58,/0.57 | 0.58,/0.49 | 0.82/0.67 | 0.54/0.50 |0.81,/0.73|0.81/0.75 | 0.31/0.22 |0.73/0.44
I3A 1 recal 1.11/0.75 | 0.56/0.49 |0.51/0.40]0.94/0.65 |0.73/0.35| 0.87/0.81 |0.75/0.72{0.24/0.17 | 0.59/0.41
I3A 2 recal 1.22/0.73 ] 0.54/0.50 |0.50,/0.40]0.99/0.64 |0.73/0.35| 0.87/0.81 |0.75/0.71/0.24/0.17 |0.60/0.38
I3A 3 recal 0.74/0.71] 0.69/0.58 [0.59/0.58 [0.70/0.63|0.53,/0.49/0.81/0.72(0.75/0.70| 0.33/0.24 0.43/0.39

Table 3. actCost/minCost for core-core conditions using different length of trial lists

actCost/minCost|  detl det2 det3 det4 detb det6 det7 ‘ det8 det9
I3A 3 short 0.98/0.73 |0.61/0.59]0.59,/0.57|0.67//0.650.71,/0.45[0.97/0.72 [0.75/0.71| 0.64/0.25 [ 0.51/0.43
I3A 3 long 0.74/0.71[0.69/0.58|0.59,/0.58 |0.70/0.63|0.53,/0.49/0.81/0.72]0.75/0.70]0.33,/0.24]0.43,/0.39

This year, NIST made available an optional extended list of trials for the
core-core condition. Table 4 show the costs of our systems calibrated with the
original and corrected SRE2008 key. This list is intended to allow more accurate
cost estimations according to the above mentioned "rule of 30” [11]. In spite of
that, the costs are quite similar to those of the non extended list. Only det7 and
det8 are clearly different. Nevertheless, the shape of the det7 coreext curves, fast
rising at the left, suggests that can be same problem with the high vocal effort
microphone phonecalls or the SRE2010 key.

Table 4. actCost/minCost for coreext-coreext conditions

actCost/minCost|  detl det2 det3 det4 detb det6 det7 det8 det9

I13A1 2.06/0.69(0.51,/0.51|0.66/0.48 [1.16/0.60| 0.54/0.48 | 0.93/0.90 |2.87/0.99 | 0.48/0.46 |1.22/0.40
13A 2 3.22/0.72(0.53/0.51|0.97/0.45|1.75/0.61 | 0.70/0.49 | 0.97/0.91 | 3.73/0.99 | 0.47/0.45 |1.43/0.43
13A 3 1.08/0.73 | 0.58/0.57 [0.63/0.56 |0.74,/0.66 | 0.56/0.52 | 0.94/0.91 | 1.88/1.00 | 0.60/0.53 |0.82/0.46
I3A 1 recal 0.97/0.73 | 0.56/0.53 |0.59/0.49]0.87/0.64 |0.63/0.47| 0.96/0.91 {2.15/0.99 |0.45/0.44(0.73/0.47
13A 2 recal 1.07/0.71 | 0.55/0.53 [ 0.60/0.49 |0.94/0.62 |0.63/0.47| 0.96/0.91 |2.28/0.99 [0.45/0.44|0.76/0.44
I3A 3 recal 0.71/0.71] 0.69/0.58 | 0.61/0.59 |0.67/0.64|0.53,/0.51|0.88/0.88(1.36,/0.99| 0.52/0.48 |0.47/0.44

8.2 Non core-core

Figure 2 shows the DET curves for the core-summed, core-10sec and 10sec-10sec
conditions. Tables 5 and 6 show their costs, that are nicely calibrated. If we
compare these results with the official SRE2008 det7 results [13] we realize that
our systems greatly outperform the bests of them, what proves the advances
done in the last two years. It is worth noticing the detb core-summed DET
is very good compared to core-core one. That is, mainly, due to our speaker
segmentation system whose performance is comparable to the best published
systems.
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Fig. 2. DET curves for core-summed, core-10sec and 10sec-10sec conditions

Table 5. actCost/minCost for core-summed condition

actCost/minCost| deth
I3A 1 0.20/0.19

9 Conclusions

We have presented state of the art systems to the NIST SRE2010. Our sys-
tems present good and robust performance across conditions. Furthermore, our
summed and 10sec systems scored among the very best in the evaluation. Sys-
tems used in the core-core condition benefits very little from fusion and JFA-LLR
presents a better calibration in most of the conditions. On the other side, 10sec
systems get an interesting improvement from fusion. We would like to point out
that our speaker segmentation system allows us to achieve core-summed results
quite near to the ones of the core-core condition.

We have compared the influence of using different development trial lists for
system calibration in the new operating point. Results show the importance of
using a list with a huge number of non target trials and free of labeling errors.
Score shift between same/different microphone conditions makes calibration dif-
ficult, which makes necessary to use a channel detector. In the future, we will
work to make our systems more microphone independent and to improve our
channel detector.

Regarding to the new vocal effort speech present this year, performance
markedly degrades for the high vocal effort conditions but is unaffected for the
low vocal effort ones.

Table 6. actCost/minCost for core-10sec condition

actCost/minCost|det5 core-10sec|det5 10sec-10sec
I3A1 0.36/0.35 0.64/0.61
I3A 2 0.40/0.39 0.69/0.66
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